Titanacyclopentene complexes and their application as 1,4-dicarbanion equivalents†

Andreas Goeke,**a* **Daniel Mertl***a* **and Stephanie Jork***b*

a Givaudan Schweiz AG, Fragrance Research, Ueberlandstr. 138, 8600 Duebendorf, Switzerland. E-mail: andreas.goeke@givaudan.com

b Altana Pharma Deutschland GmbH, Postfach 100152, 78401Konstanz, Germany

Received (in Cambridge, UK) 22nd September 2003, Accepted 18th November 2003 First published as an Advance Article on the web 8th December 2003

The treatment of Ti(O*i***Pr)4 with 3-butenylmagnesium chloride generates titanacyclopentene complexes which effectively add to carbonyl compounds and nitriles to afford the 1,4-coupling products with high** *Z:E* **selectivities.**

Since the discovery of the Ti(O*i*Pr)₄-catalysed conversion of esters with Grignard reagents to substituted cyclopropanols, $¹$ this prac-</sup> tical method has turned out to be a powerful tool in synthetic organic chemistry. It has significantly encouraged further investigation of similar reactions.2 An important feature of this methodology is the facile ligand exchange of the *in situ* generated $(\eta^2$ -alkene)Ti $(OiPr)_2$ **1a** with other alkenes and dialkenes to enable inter- and intramolecular reactions. Intermediate **1a** may also be interpreted as a titanacyclopropane **1b** (Scheme 1), having a 1,2-dicarbanionic reactivity pattern, as such species react with two equivalents of an electrophile.3

The ligand exchange of complex **1** with 1,3-dienes has been little investigated. Sato *et al.* reported the conversion of hexa-3,5-dienyl ethyl carbonate with complex **1** and proposed a 1,4-dicarbanionic titanacyclopentene intermediate similar to structure **2b**. 4 On the other hand, de Meijere *et al.* observed that conjugated dienes and trienes were accepted by **1** as particularly good ligands, but the resulting intermediate **2** behaved selectively as a 1,2-dicarbanionic vinyltitana-cyclopropane when trapped with dibenzylformamide.5

We now report an effective intermolecular coupling of but-3-enylmagnesium chloride with 2 equivalents of an electrophile in the presence of $Ti(OiPr)₄$. This offers a new access to *cis*configured hex-3-ene-1,6-diols, 6-hydroxy ketones and 1,6-diones.† This coupling worked most selectively with aldehydes and ketones of low steric demand (Scheme 2, Table 1). Not only was an exclusive 1,4-double addition of the carbonyl compound to complex 2 observed, but also high *Z:E* ratios of $>95:5$ were determined in products **4** (Entries 1–8). Increasing bulk of the substrates (Entries 9,10) led to lower yields and the *Z:E* ratio changed for the worse as well. In the case using methyl *tert*-butyl ketone as an electrophile, the *Z:E* selectivity was found to be reversed.

A rationale for these observations is depicted in Scheme 3. The addition of butenylmagnesium chloride to $Ti(OiPr)_4$ gives dibutenyltitanium species 5 which undergoes a β -hydride elimination/ reductive elimination sequence to the putative intermediate **2**. Since we did not observe any 1,2-dicarbanion reaction products, we assume titanacyclopentene **2b** to be the much favoured species in this equilibrium.6,7 The carbonyl compound inserts now into the titanacyclopentene **2b** giving rise to complex **6**. The second equivalent presumably reacts with oxatitanacycloheptene **6a** to the 9-membered intermediate **7** in which the *cis*-geometry found in the coupling products **4** is still preserved. However, bulky electrophiles may preferentially add to the oxatitanacyclopentane **6b** which results in a higher portion of *E*-configured diol **4**. 9

Higher substituted Grignard reagents generally resulted in lower yields. The sequential insertion of electrophiles may even be blocked completely. For instance, the reaction of 4-methylpent-3-enylmagnesium bromide with cyclopentanone afforded a mixture of the monoalkylation products **8** and **9** in 25% yield (Scheme 4), both isomers having *E*-configuration.

Table 1 Symmetrical coupling of aldehydes and ketones

Entry	R, R'	Product $(\%)^a$	d.r.b	$Z: E^b$
1	$H, i-Pr$	4a(85)	2.5:1	>95:5
\overline{c}	H. n-Bu	4b(82)	1.3:1	>95:5
3	H, CH=C(CH ₃) ₂	4c (57)	1:1	>95:5
$\overline{4}$	$(CH_2)_4$	4d(78)		>95:5
5	(CH_2)	4e(78)		>95:5
6	Me, Me	4f $(63)^8$		>95:5
7	Me, $CH=CH2$	4g(54)	1.4:1	>95:5
8	Me, $CH_2CH_2CH=C(CH_3)$	4h (67)	1.4:1	>95:5
9	Me, t -Bu	4i (42)	5:1	1:1.4
10	Me, Ph	4j(30)	1.8:1	9:1
	α isolated by chromatography, β determined by NMR.			

Scheme 3

bol:

The above results suggested utilising this methodology for a macrocyclisation with *e.g.* diketones (Scheme 5). However, an attempt to react acetonylacetone with complex **2** did not furnish the expected cyclooctendiol **11** but gave stereoselectively the vinyl cyclohexanediol **12**. This was the only example obtained, in which complex **2**, treated with a ketone, displayed its 1,2-dicarbanion properties. Reactions of species **2** with higher homologues of **10** led to non-uniform mixtures.

While the symmetrical coupling (2 equivalents of the same carbonyl compound) provided useful results, subsequent treatment of complex **2** with two different aldehydes or ketones led to statistical mixtures of symmetrical and unsymmetrical coupling products. Apparently, intermediate **6** possesses a reactivity not very different from that of **2**. In order to circumvent this problem, complex 2 was first reacted with a nitrile at -50 °C, resulting in the formation of iminotitanacycloheptene **14** (Scheme 6) which we assumed to be less reactive than the oxa-analogue **6**. Indeed, after hydrolysis of intermediate 14 at -30 °C with 2N HCl, ketone $15a$ was obtained in 76% yield without any observable isomerisation of

Table 2 Unsymmetrical coupling products

Entry	R	R'	R'' , R'''	Time/h	T /°C	Product (96) a,b			
	Et				$-50 \rightarrow (-30)$	15a (76)			
2	$i-Pr$			1	$-50 \rightarrow (-30)$	15 \bf{b} (79)			
3	Et	Et		4	$-50 \rightarrow (+35)$	16 (33)			
$\overline{4}$	Et		$(CH_2)_4$	2	$-50 \rightarrow (-10)$	17a (76)			
5	Et		Me, $CH=CH2$ 2		$-50 \rightarrow (-10)$	17 \bf{b} (53)			
6	Et		H. Et	2	$-50 \rightarrow (-10)$	17 $c(60)$			
<i>a</i> isolated by chromatography, b Z:E ratio > 95:5.									

the deconjugated *cis*-configured double bond (Scheme 6, Table 2, Entries 1 and 2). On the other hand, **14** was reactive enough to add an additional equivalent of a nitrile at elevated temperature (Entry 3) leading to a diketone **16**. Moreover, intermediate **14** also tolerated a subsequently added ketone or aldehyde (Entries 4–6) which produced the unsymmetrical coupling products **17a–c**, also having the *cis*-double bond preserved.

We are grateful to A. Vasella for the fruitful and inspiring discussions and to G. Brunner for NMR studies.

Notes and references

- 1 O. G Kulinkovich, S. V. Sviridov, D. A. Vasilevskii and T. S. Pritytskaya, *Zh. Org. Khim.*, 1989, **25**, 2244; O. G. Kulinkovich, S. V. Sviridov and D. A. Vasilevskii, *Synthesis*, 1991, 234.
- 2 O. G. Kulinkovich and A. de Meijere, *Chem. Rev.*, 2000, **100**, 2789; F. Sato, H. Urabe and S. Okamoto, *Chem. Rev.*, 2000, **100**, 2835; O. G. Kulinkovich, *Chem. Rev.*, 2003, **103**, 2597.
- 3 J. J. Eisch, J. N. Gitua, P. O. Otieno and X. Shi, *J. Organomet. Chem.*, 2001, **624**, 229.
- 4 P. K. Zubaidha, A. Kasatkin and F. Sato, *J. Chem. Soc., Chem. Commun.*, 1996, 197.
- 5 C. M. Williams, V. Chaplinski, P. R. Schreiner and A. de Meijere, *Tetrahedron Lett.*, 1998, **39**, 7695.
- 6 A 4,4A-di-*tert*-butylbiphenyl-catalysed *in situ* lithium-halogen exchange with dichlorobutenes led to 1,4-dilithiobut-2-ene which was converted into mixtures of 1,4- and 1,2-disubstitution products: A. Guijarro and M. Yus, *Tetrahedron*, 1994, **50**, 7857. The synthetic usefulness of nontransition metal stabilised 1,4-dicarbanions, *e.g.* dilithiobutadienes is limited due to the ignition and polymerization potential: P. v. R. Schleyer, *Pure Appl. Chem.*, 1983, **55**, 355; J. J. Bahl, R. B. Bates, W. A. Beavers and N. S. Mills, *J. Org. Chem.*, 1976, **41**, 1620.
- 7 Reductive metallation of dienes with magnesium led to diene-magnesium reagents which add electrophiles with allylic inversion. For a review see: F. Sato and H. Urabe, *Chemical Industries*, 64 (Handbook of Grignard Reagents), Dekker, New York, 1996, 23.
- 8 This compound was identified in various essential oils: K. H. C. Baser, B. Demirci, H. Duman, Z. Aytac and N. Adlguzel, *J. Essent. Oil Res.*, 2001, **13**, 219; B. Demirci, T. Ozek and K. H. C. Baser, *J. Essent. Oil Res.*, 2000, **12**, 625; K. H. C. Baser, T. Ozek, B. Demirchakamak, K. R. Nuriddinov, B. Y. Abduganiev, K. N. Aripov, K. K. Khodzimatov, O. A. Nigmatullaev and E. D. Shamyanov, *Chem. Nat. Comp.*, 1997, **33**, 293; J. O. Moody, S. A. Adeleye, M. G. Gundidza and G. Wyllie, *Pharmazie*, 1994, **49**, 935.
- 9 Similar intermediates leading to *trans-*configured diols were described in the chemistry of dicyclopentadienyl zirconium diene complexes: H. Yasuda, T. Okamoto, K. Mashima and A. Nakamura, *J. Organomet. Chem.*, 1989, **363**, 61.